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By means of the “convection-diffusion partial differential equation”, a model for the migration 
of leukocyte towards the implantation site of a vascular prosthetic material has been 
developed. Although this is a simplified version of more complex models used to describe cell 
populations’ dynamics, it provides meaningful data on leukocytes’ behavior in the presence of 
chemotactic factors released by the implanted prosthetic material. Both the analytical solution 
and the numerical approximation are provided along with three-dimensional graphs to 
accompany the results. 
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INTRODUCTION 

Cardiovascular disease is the second leading cause of death the world and the second leading cause 

of death in the United States 
[1]

. Among all cardiovascular diseases, atherosclerosis is the most 

important because almost all life-threatening cardiovascular disorders (e.g. coronary artery disease) 

are derived from it.  

Atherosclerosis, in brief, is the abnormal accumulation of plaque (which is mainly composed of fat 

and calcium) inside the arteries
 [2]

. This plaque abates the artery’s normal blood flow and, at an 

advanced stage of the disease, ruptures (becomes a thrombus) and eventually starts to flow in the 

bloodstream until it completely occludes one small-diameter artery. This finally leads to ischemia 

and infarction of the organ (e.g. heart or even the brain) that used to be nourished by the now 

occluded artery 
[3]

. 

Tissue engineered vascular grafts (TEVG) are promising alternatives for treating cardiovascular 

diseases related to atherosclerosis (e.g. carotid artery disease). A TEVG is a prosthetic material that 

behaves as an artificial blood vessel to replace atherosclerotic arteries in the patient’s circulatory 

system. Although much effort and many years of research have been dedicated to the task of 

improving these prosthetic materials, it has not been possible to build a reliable and durable TEVG 

yet. It has been well established that the presence of a foreign body in the tissue, such as a 

prosthetic material, increases the risk of infection 
[4]

 and this is actually the main reason that lies 

beneath complications with vascular prosthetic materials implantation 
[5]

.  

Because leukocytes serve as the key acute inflammatory mediators, the control of their motility on 

the surfaces of vascular prosthetic materials is a crucial factor in promoting implant infection 

resistance 
[6]

. Whereas leukocyte behavior and motility on normal vascular tissue has been 

extensively studied 
[7]

, very few details are known in terms of the regulation of their migration on 

vascular prosthetic biomaterials. Right after a prosthetic material is implanted, an immune response 

is triggered and, eventually, several circulating proteins begin to modulate the behavior of adherent 

leukocytes in order to direct their migration to the implant site 
[8]

. Leukocytes will then flow in the 

blood towards the prosthetic material to adhere to its surface in order to attack any infectious agent 

that could be present along the prosthetic vascular graft and try to eliminate them. 

PROBLEM STATEMENT 

We consider the following problem: A linear prosthetic material (i.e. engineered vascular graft) of 

length L and constant cross sectional area has just been implanted in one of the arteries of a patient 

and immediately triggers an immune response with the subsequent migration of leukocytes towards 

the implantation site. We would like to find a mathematical expression for the concentration of 

leukocytes    ,    along the vascular prosthetic material as a function of distance   and time  . 

Assumptions 

 We assume the concentration of leukocytes is constant on the left boundary of the 

prosthetic at all times (it can be seen as a source of leukocytes) and equal to C0.  
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L 

   

     

 Also, we assume the site of infection is at the right boundary and leukocytes would move 

out of the endothelium of a prosthetic blood vessel only at this point. Therefore the 

concentration of leukocytes on the right boundary will always be equal to zero. 

 The initial concentration of leukocytes along the prosthetic material is 0. 

 The migration of leukocytes along the prosthetic device is not only determined by their 

constant diffusivity μD but also by their constant drift velocity veff caused by blood flow. 

 Chemotactic factors that attract leukocytes are released at the infection site (right 

boundary).  

 Leukocytes displace in the direction of the blood flow. 

With these assumptions made, we can now consider the “mass balance” for the concentration of 

leukocytes along the prosthetic material at any time. The migration of leukocyte is determined by 

both diffusion and convection. Then, the flux of leukocytes concentration    is given by: 

                          

              
  

  
                                                

Since the number of leukocytes is conserved, we have: 

  

  
 

 

  
     

  

  
  

 

  
    

  

  
        

This model is known as the “convection-diffusion” equation and, therefore, our final partial 

differential equation is 
[9]

: 

  

  
   

   

   
     

  

  
 

With Initial and Boundary Conditions given as: 

         ,                                 ,                          ,       

Note: The values of both veff and μD for various types of arteries have been experimentally 

determined in several works found in literature such as that of Keller and Segel 
[10]

. 

 

 

 

 

 
Infection 
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ANALYTICAL SOLUTION 

Part 1: Simplified model 

Assumption: Convection (drift) term is zero, i.e. v     . 

The diffusion-convection equation can be reduced to diffusion equation. 

Reduced to Diffusion Equation 

(The migration of Leukocyte in 

the absence of blood flow.) 

    , t 

 t
   

     , t 

   
 

Boundary Conditions 

Initial Condition 

   , t     ,    , t    , t    

   ,      ,       

 

To homogenize the boundary conditions, let    , t       , t        , we can solve steady-state 

solution       and make time-varying solution     , t  easy to solve. 

 

Steady-state solution       Time-varying solution     , t  

  
       

   
   

     , t 

 t
   

      , t 

   
 

         ,           
    , t    ,     , t     

    ,           
 

(1) Steady-state solution:       
The second derivative of the steady-state solution is equal to zero. The solution has the general 

form:  

          B 

Implementing with the boundary conditions shown above we get the following equations:  

      B     

         B    

Using these equations the variable A can be found: 

   
  

   

***Plugging A back into the general form of the steady-state solution results, 

           
 

 
 ,       
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(2) Time-varying solution:     , t  
Solve for diffusion equation with homogeneous boundary conditions: 

Use separation of variables: 

    , t          t  

We can solve for time-dependence and space-dependence solutions separately. 

 

  

   t 
 t
  t 

 

      
   

    
    

(a) Time-dependence solution 

  t   e      

(b) Space-dependence solution: 

(i) For    ,         B. With boundary conditions,   B    

       

(ii) For    ,       e     Be     , With boundary conditions,  

       

(iii) For    ,       cos      Bsin     , With boundary conditions, 

     Bsin     , where    
  

 
, n   , ,  

Combine (a) and (b), 

    , t     sin  
n 

 
  e

    
  
 
 
 
 

 

   

 

Solve coefficient    to satisfy the initial condition. 

    ,       sin  
n 

 
             

 

 
   

 

   

 

   
 

 
    

 

 
   sin  

n 

 
  d   

   
  

 

 

 

Combine steady-state and time-varying solution, we obtain the final solution: 

   , t       
 

 
   

   
  

sin  
n 

 
  e    
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Part 2: General Model 

Now we consider the effect of blood flow and thus the convection (drift) term in our general model. 

 

Diffusion-convection Equation 
    , t 

 t
     

    , t 

  
   

     , t 

   
 

Boundary Conditions 

Initial Condition 

   , t     ,    , t    , t    

   ,      ,       

 

Similarly, we can homogenize the boundary condition. Let    , t       , t        ,  

 

Steady-state solution       Time-varying solution     , t  

    
      

  
   

       

   
 

    , t 

 t
     

    , t 

  
   

     , t 

   
 

         ,           
    , t    ,     , t     

    ,           
 

(1) Steady-state solution:       
Integrating both sides two times, we have the general form of the solution:  

       e
    
  

 
 B 

By boundary conditions,  

  B    ,  e
    
  

 
 B    

  
  

   

    
  

 
, B    

  

    
  

 

   

    
  

 
 

We have the steady-state solution. 

        
   

 
    
  

     

   
 
    
  

 
 

Note that the steady-state solution is not linear as in reduced model. It’s the effect of blood flow 

which carries leukocytes further. For more discussion, please see the numerical simulation. 

 

(2) Time-varying solution:     , t  
Solve for diffusion equation with homogeneous boundary conditions. 
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Use separation of variables: 

    , t          t  

We can solve for time-dependence and space-dependence solutions separately. 

 

  

   t 
 t
  t 

 

      
   

 
    
  

     
  

    
    

(a) Time-dependence solution: 

  t   e      

(b) Space-dependence solution: 

The general model has a convection term. It is a secondary derivative ordinary differential 

equation. 

      

   
 
    
  

     

  
         

Its auxiliary equation is, 

r  
    
  

      

The roots of the auxiliary equation are, 

r  
                      

 
 

(i) For   
 

 
 
    

  
 
 
, the equation has double root r  

    

   
 

The solution has the form       e   B e  . 

With boundary conditions:    , B e    , B    

       

(ii) For   
 

 
 
    

  
 
 
, the equation has positive real roots and the solution is 

      e    Be    

 With boundary conditions:   B   ,  e    Be     ,   B    

       

(iii) For   
 

 
 
    

  
 
 
, 

The equation has complex roots and solution has general form, 

     e
    
   

 
  sin 

   

 
   Bcos 

   

 
    

where                 . 

With boundary conditions: B   , and  

     e
    
   

 
 sin  
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For non-trivial solution,  

   

 
    ,     

   

 
, 

  
  

 
 

 

 
 
    

  
 
 
 

    

  
 

 

 
 
    

  
 
 
,    , ,   

Combine (a) and (b), we have time-varying solution, 

    , t  e
    
   

   
    
 

  
   sin  

n 

 
  e

   
    

  
 

 

   

 

Solve coefficients An to satisfy the initial condition. 

    ,    e
    
   

 
   sin  

n 

 
  

 

   

    
   

 
    
  

     

   
 
    
  

 
 

Rewrite the equation above, 

   sin  
n 

 
  

 

   

    
   

 
    
  

     

   
 
    
  

 
e
 
    
   

 
        

 
   e

 
    
   

 

   
 
    
  

 
  

 
    
   

     
  

    
   

     
 

    

sinh 
    
   

      

sinh  
    
   

  
 

By multiplying sin  
  

 
   and integrating both sides, we have 

   
 

 
    

sinh  
    
   

      

sinh  
    
   

  
sin  

n 

 
    

 

 

 
    

 sinh  
    
   

  
 sinh 

    
   

      sin  
n 

 
    

 

 

  
     

         
      

  
 

 

Combining steady-state and time-varying solution, we obtain the final Solution: 
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   , t  e
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At a quick inspection of the solution, except for the nonlinear steady-state term, there is a 

e
    
   

   
    
 
  

 moving wave term with velocity 
    

 
 and direction of +x. This is the result of 

convection term and thus the blood flow.  

NUMERICAL SOLUTION 

 To obtain a better understanding of what the analytical solution means, numerical solutions 

can be used to graphically show the concentration profile in regards to length(x) and time(t). The 

next four plots were used to see the effect Veff has on the system. For these cases the diffusion 

coefficient was kept constant. The first numerical solution pictured below represents the simplified 

version of the differentail equation;  which means Veff=0. From this surface plot, it is evident that 

the concentration profile becomes linear at time goes to innfinty, which also agrees with the 

analytical solution for the steady state profile of the simplified equation. 
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The next surface plot looks at  the concentration profile when Veff is present and has a 

negative value. In reality Veff will never be negative because that would entail the blood flow to go 

backwards. The plot shows that as time goes to infinity the concentration profile tends toward a 

concave up ramp shape; the higher side being at x=0.  This makes senses because the blood flow 

would be fighting against the efforts of diffusion and push back the leukocytes. This is especially 

evident when comparing this plot to the first plot at x = 1. 

 

The third surface plot Is the closest representation to what the leukocyte concetration would 

be in real life. In this case Veff is a positive number and is of the same magnitude as the previous 

plot. Having Veff as a positive number represents the flow of blood in the forward direction. The 

forward flow  helps the diffusion of leukocytes by pushing them further down the prosthetic 

implant. This produces a concave down concentration profile for leukocytes as time goes to infinity 

.  
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The next plot shows more cleary what the steady state concentration profile is for this 

equation at the different values of Veff.  

 

 

Along with seeing the effects of Veff has on the equation, it is also important to understand 

how the diffusion constant plays a role in the leukocyte concetration. For all of the following plots, 

Veff is 0 in order to make the effects of diffusion more clear. Also, take note that all diffusion 

constants, although at different magnitudes, are all positive. This is because is the definition of 

diffusion is the act of spreading out, the postive case, and not retracting, the negative case. By 

comparing the next three suraface plots to each other it is evident that the main effect of the 

diffusion constant is on the time it takes for the system to reach steady state.  
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Given enough time the first two plots would eventually have the same linear profile as the last plot. 

To get a cleaer view of the role of the diffusion constant, a plot of the concentration profile for all 

all three values at time = 300seconds is shown below. Clearly as the diffusion constant increases in 

magnitude, the faster the concentration profile will reach steady state. 
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CONCLUSIONS AND FUTURE WORK 

Convection has a very important effect over the form of the solution of the Diffusion 

Equation and, thus, over the motion of leukocytes while they migrate towards the implantation site 

of a vascular graft. In order to prevent infection in prosthetic vascular grafts, one must understand 

this behavior of leukocytes and use mathematical models to predict the time it takes to get a 

desirable concentration of these cells in the point of interest. Also, several assays should be 

performed with different conditions in order to be able to optimize immune response and infection 

resistance during implantation of this prosthetics. 

Future work in modeling the migration of leukocytes towards the implantation site of a 

vascular prosthetic material can be more accurate by modifying the assumptions we made. For 

instance, one assumption made was that the concentration of leukocytes at the left boundary is 

constant (C0) and zero at the right boundary. However, in a more realistic model the concentration 

of leukocytes at the boundaries would behave more like a function of time due to blood flow and 

random collisions of leukocytes with other types of cells in the blood stream.  

Another important characteristic of our model that must be taken into consideration is that it 

was chosen to be one-dimensional. A future (and more complex) model will have to be a two-

dimensional system in z (position) and θ (angle with respect to the center of the cylindrical vascular 

graft). The model would be two-dimensional because radius R of prosthetic vascular grafts is 

usually constant. Finally, the rate of chemo-attractant molecules (released at the infection site, the 

right boundary) is of massive importance for modeling leukocytes migration since these molecules 

greatly determine the level of the immune response and their motion should be included as a 

function of position and time. 
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APPENDIX: MATLAB CODE 

%% Simplified Model - Finite difference method 
% diffusion constant 
clear all 
global D 
D = 1*10^-4; % cm^2/s 

  
global C0 
C0 = 1*10^6; 

  
global V 
V = 0; % cm/s 

  
% domain 
dx = 0.005; % step size in x dimension cm 
dt = .1; % step size in t dimension weeks 
xmesh = 0:dx:.2; % domain in x cm 
tmesh = 0:dt:150; % domain in t weeks 

  
% solution using finite differences (see Week 1 class notes) 
nx = length(xmesh); % number of points in x dimension 
nt = length(tmesh); % number of points in t dimension 
stepsize = D * dt / dx^2; % stepsize for numerical integration 
sol_fd = zeros(nt, nx); 
sol_fd(:, 1) = C0; % left boundary conditions; constant value 
sol_fd(:, nx) = 0; % left boundary conditions; zero value 
sol_fd(1, :) = 0;  % initial conditions; zero 

  
for t = 1:nt-1 
    for x = 2:nx-1 
        sol_fd(t+1, x) = sol_fd(t, x) + stepsize * ... 
            (sol_fd(t, x-1) - 2 * sol_fd(t, x) + sol_fd(t, x+1)) - 

(V*dt/dx) * ... 
            (sol_fd(t, x+1) - sol_fd(t, x)); 
    end 
end 

  
figure(1) 
surf(tmesh,xmesh,sol_fd','EdgeColor','none') 
title('Luekocyte Migration Finite differences: Simplified Model Veff = 

0cm/s') 
xlabel('t(secs)') 
ylabel('x (cm)'); 
zlabel('C(x,t) (cells/m^2)') 

  
A= sol_fd(1500, :)'; 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%% 
%% General Model - Finite difference method 
% diffusion constant 
global D 
D = 1*10^-4; % cm^2/s 
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global C0 
C0 = 1*10^6; 

  
global V 
V = -1.5*10^-3; % cm/s 

  
% domain 
dx = 0.005; % step size in x dimension cm 
dt = .1; % step size in t dimension weeks 
xmesh = 0:dx:.2; % domain in x cm 
tmesh = 0:dt:150; % domain in t weeks 

  
% solution using finite differences (see Week 1 class notes) 
nx = length(xmesh); % number of points in x dimension 
nt = length(tmesh); % number of points in t dimension 
stepsize = D * dt / dx^2; % stepsize for numerical integration 
sol_fd = zeros(nt, nx); 
sol_fd(:, 1) = C0; % left boundary conditions; constant value 
sol_fd(:, nx) = 0; % left boundary conditions; zero value 
sol_fd(1, :) = 0;  % initial conditions; zero 

  
for t = 1:nt-1 
    for x = 2:nx-1 
        sol_fd(t+1, x) = sol_fd(t, x) + stepsize * ... 
            (sol_fd(t, x-1) - 2 * sol_fd(t, x) + sol_fd(t, x+1)) - 

(V*dt/dx) * ... 
            (sol_fd(t, x+1) - sol_fd(t, x)); 
    end 
end 

  
figure(2) 
surf(tmesh,xmesh,sol_fd','EdgeColor','none') 
title('Luekocyte Migration Finite differences: General Model Veff = V = -

1.5*10^-3cm/s') 
xlabel('t(secs)') 
ylabel('x (cm)'); 
zlabel('C(x,t) (cells/m^2)') 

  
A1= sol_fd(1500, :)'; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%% 
%% General Model - Finite difference method 
% diffusion constant 
global D 
D = 1*10^-4; % cm^2/s 

  
global C0 
C0 = 1*10^6; 

  
global V 
V = 1.5*10^-3; % cm/s 

  
% domain 
dx = 0.005; % step size in x dimension cm 
dt = .1; % step size in t dimension weeks 
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xmesh = 0:dx:.2; % domain in x cm 
tmesh = 0:dt:150; % domain in t weeks 

  
% solution using finite differences (see Week 1 class notes) 
nx = length(xmesh); % number of points in x dimension 
nt = length(tmesh); % number of points in t dimension 
stepsize = D * dt / dx^2; % stepsize for numerical integration 
sol_fd = zeros(nt, nx); 
sol_fd(:, 1) = C0; % left boundary conditions; constant value 
sol_fd(:, nx) = 0; % left boundary conditions; zero value 
sol_fd(1, :) = 0;  % initial conditions; zero 

  
for t = 1:nt-1 
    for x = 2:nx-1 
        sol_fd(t+1, x) = sol_fd(t, x) + stepsize * ... 
            (sol_fd(t, x-1) - 2 * sol_fd(t, x) + sol_fd(t, x+1)) - 

(V*dt/dx) * ... 
            (sol_fd(t, x+1) - sol_fd(t, x)); 
    end 
end 

  
figure(3) 
surf(tmesh,xmesh,sol_fd','EdgeColor','none') 
title('Luekocyte Migration Finite differences: General Model Veff = 

1.5*10^-3cm/s') 
xlabel('t(secs)') 
ylabel('x (cm)'); 
zlabel('C(x,t) (cells/m^2)') 

  
A2= sol_fd(1500, :)'; 
figure(4) 
plot(xmesh, A, 'r', 'linewidth', 2.5); 
hold on 
plot(xmesh, A1, 'k', 'linewidth', 2.5); 
plot(xmesh, A2,  'linewidth', 2.5); 
title('Luekocyte Concetration Profile @ t=150secs Finite differences') 
xlabel('x (cm)'); 
ylabel('C(x,t) (cells/m^2)') 
legend('Veff = 0cm/s','Veff = -1.5*10^-3cm/s','Veff = 1.5*10^-3cm/s') 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%% 

 

%Migration of Leukocytes with "pdepe" 

  
function leukocytemig 
global miuD 
global Co 
global veff 
global L 

  
Co = 1e6; %cells/cm^2 
miuD = 1e-6; %cm^2/s 
L = 0.2; %cm 
veff = 1e-5; %cm/s 
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x = 0:0.01*L:L; 
t = 0:1:300; 

  
sol_pdepe = pdepe(0,@pdefun,@ic,@bc,x,t); 

  
A= sol_pdepe(300, :)'; 
figure(4) 
plot(x, A, 'r', 'linewidth', 2.5); 
hold on 
figure(1) 
surf(t,x,sol_pdepe','EdgeColor','none') 
title('Migration of Leukocytes PDEPE with D=1e-6cm^2/s') 
xlabel('t (seconds)') 
ylabel('x (cm)') 
zlabel('C(x,t) (cells/m^2') 
% function definitions for pdepe: 
% -------------------------------------------------------------- 
function [c, f, s] = pdefun(x, t, u, DuDx) 
% PDE coefficients functions 
global miuD 
global veff 
c = 1; 
f = miuD * DuDx; % diffusion 
s = -veff * DuDx; % convection 
% -------------------------------------------------------------- 
function u0 = ic(x) 
global Co 

  
% Initial conditions function 
u0 = (x==0); 

  

  
% -------------------------------------------------------------- 
function [pl, ql, pr, qr] = bc(xl, ul, xr, ur, t) 
% Boundary conditions function 

  
global Co 

  
pl = ul-Co; % value left boundary condition 
ql = 0; % flux left boundary condition 
pr = ur; % value right boundary condition 
qr = 0; % flux right boundary condition 

 

 

%Migration of Leukocytes with "pdepe" 

  
function leukocytemig1 
global miuD 
global Co 
global veff 
global L 

  
Co = 1e6; %cells/cm^2 
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miuD = 1e-5; %cm^2/s 
L = 0.2; %cm 
veff = 1e-5; %cm/s 
x = 0:0.01*L:L; 
t = 0:1:300; 

  
sol_pdepe1 = pdepe(0,@pdefun2,@ic2,@bc2,x,t); 
A1= sol_pdepe1(300, :)'; 
figure(4) 
plot(x, A1, 'k', 'linewidth', 2.5); 
hold on 
figure(2) 
surf(t,x,sol_pdepe1','EdgeColor','none') 
title('Migration of Leukocytes PDEPE with D=1e-5cm^2/s') 
xlabel('t (seconds)') 
ylabel('x (cm)') 
zlabel('C(x,t) (cells/m^2') 
% function definitions for pdepe: 
% -------------------------------------------------------------- 
function [c, f, s] = pdefun2(x, t, u, DuDx) 
% PDE coefficients functions 
global miuD 
global veff 
c = 1; 
f = miuD * DuDx; % diffusion 
s = -veff * DuDx; % convection 
% -------------------------------------------------------------- 
function u0 = ic2(x) 
global Co 

  
% Initial conditions function 
u0 = (x==0); 

  

  
% -------------------------------------------------------------- 
function [pl, ql, pr, qr] = bc2(xl, ul, xr, ur, t) 
% Boundary conditions function 

  
global Co 

  
pl = ul-Co; % value left boundary condition 
ql = 0; % flux left boundary condition 
pr = ur; % value right boundary condition 
qr = 0; % flux right boundary condition 

 

 

%Migration of Leukocytes with "pdepe" 

  
function leukocytemig2 
global miuD 
global Co 
global veff 
global L 
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Co = 1e6; %cells/cm^2 
miuD = 1e-3; %cm^2/s 
L = 0.2; %cm 
veff = 1e-5; %cm/s 
x = 0:0.01*L:L; 
t = 0:1:300; 

  
sol_pdepe2 = pdepe(0,@pdefun3,@ic3,@bc3,x,t); 
A2= sol_pdepe2(300, :)'; 
figure(3) 
surf(t,x,sol_pdepe2','EdgeColor','none') 
title('Migration of Leukocytes PDEPE with D=1e-3cm^2/s') 
xlabel('t (seconds)') 
ylabel('x (m)') 
zlabel('C(x,t) (cells/m^2)') 

  
figure(4) 
plot(x, A2, 'b', 'linewidth', 2.5); 
hold on 

  
title('Luekocyte Concetration Profile @ time = 300 secs PDEPE:') 
xlabel('x (cm)'); 
ylabel('C(x,t) (cells/m^2)') 
legend('D=1e-6cm^2/s','D=1e-5cm^2/s','D=1e-3cm^2/s') 
% function definitions for pdepe: 
% -------------------------------------------------------------- 
function [c, f, s] = pdefun3(x, t, u, DuDx) 
% PDE coefficients functions 
global miuD 
global veff 
c = 1; 
f = miuD * DuDx; % diffusion 
s = -veff * DuDx; % convection 
% -------------------------------------------------------------- 
function u0 = ic3(x) 
global Co 

  
% Initial conditions function 
u0 = (x==0); 

  

  
% -------------------------------------------------------------- 
function [pl, ql, pr, qr] = bc3(xl, ul, xr, ur, t) 
% Boundary conditions function 

  
global Co 

  
pl = ul-Co; % value left boundary condition 
ql = 0; % flux left boundary condition 
pr = ur; % value right boundary condition 
qr = 0; % flux right boundary condition 

 


